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Introduction

HE unsteady interferences from vortical disturbances in

the flow can be important for the aeroelastic behavior
of lifting surfaces. Frequently, these interferences alter the
flowfield significantly, with consequent changes in aerody-
namic loading and aeroelastic behavior of the lifting surfaces.
In transonic regime where shock wave strength and position
are sensitive to small changes in flow parameters, vortical
wakes may be shed from the wing for a variety of flow con-
ditions. The downstream tail is under the direct influence of
such vortical wakes and may experience significant changes
in aeroelastic characteristics. It is thus of practical importance
to investigate the aerodynamic interferences and aeroelastic
characteristics of the tail, under the influence of a stationary
or oscillating forewing.

Most of the aeroelastic studies in the literature focus on
the flutter behavior of an isolated airfoil. There have been
few concerns about the aeroelastic characteristics of two-air-
foil systems, which are the two-dimensional representation of
a canard—wing or wing—tail configuration. Shankar and
Malmuth' performed the steady transonic small disturbance
calculations for the two-dimensional canard—wing systems.
Batina® studied the aeroelastic stability and flutter of two-
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dimensional wing—canard configurations in frequency do-
main. These studies are all based on the transonic small dis-
turbance equations, where the shock is weak and the airfoil
motion is assumed small. Recently, the Euler solver on dy-
namic unstructured meshes are employed for more realistic
aeroelastic studies. For example, Rausch et al.? performed
the Euler flutter analysis of airfoils using unstructured dy-
namic meshes. Batina* calculated the unsteady flow over an
aircraft oscillating with a fuselage bending mode. The Euler
solvers in these studies are based on multistage Runge—Kutta
time-stepping schemes with added artificial dissipation terms
to contro] the stability and the oscillation across solution dis-
continuities.

Euler Solver on Dynamic Unstructured Mesh

In this study, an upwind unstructured Euler solver based
on Roe’s approximate Riemann solver®® and a two-degree-
of-freedom aeroelastic solver are employed for the time-do-
main flutter analysis of wing—tail configurations. A dynamic
grid method is implemented by treating the mesh as a spring
network where each edge of each cell represents a spring with
stiffness inversely proportional to the length of that edge. The
outer boundary of the mesh is held fixed in space, while the
inner boundaries such as the surfaces of the wing and the tail
are allowed to move in a prescribed manner or as determined
by aeroelastic solver. The positions of the interior nodes are
then determined by the static equilibrium of the spring system.
The geometrical conservation laws (GCL) are enforced by
the procedure proposed by Vinokur,” which avoids the explicit
integration of the cell volume.

Time-Marching Aeroelastic Solver

The aeroelastic solver takes the aerodynamic loads com-
puted by the Euler solver as the input forcing functions. It
then solves the classical aeroelastic equations of motion for
a typical section airfoil in terms of plunge and pitch degree
of freedom. Considering the inertia, elastic, and aerodynamic
forces, the nondimensional aeroelastic equations of motion
without damping can be written as

My + Ky = Gu (1)

where y = [ha]7 is the vector of plunge displacement 4 (pos-
itive when downward) and pitch displacement « (positive when
nose-up) measured from the assumed static operating con-
dition; u = [(C, — C,;)(Cyy — Ci)l7 is the vector of aero-
dynamic loads with the static load C,, and C,,, subtracted;
and matrices M, K, and G are the coefficient matrices of
generalized mass, stiffness, and forces, respectively. In par-
ticular, a speed index V* = 2U./cw, is involved in matrix K,
where ¢ is the chord length and w, is the uncoupled natural
frequency in pitching. It is convenient to put Eq. (1) in a
linear state equation form:

X = Ax + Bu (2)

where x = [hahd]” and matrices A and B are made of M,
K, and G. After approximations for a small time step, Eq.
(2) is integrated in time by the algorithm of Edwards et al.®:

X, = ¥x, + OBGu, — u,_ )2 3)
where ® is the state-transition matrix, and © is the integral
of ® from time step n to n + 1. By varying V*, the time
history of displacement is recorded and processed by a fast
Fourier transform (FFT) analysis or a modal identification
technique by Bennert and Desmarais® to identify its damping

and frequency. The system is said to be fluttering when the
system damping is negative.
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Tail Flutter with a Stationary Forewing

A two-airfoil system is used to represent a two-dimensional
wing—tail configuration. NACA 0012 airfoil section is chosen
for both airfoils. The tail chord is normalized to unit and the
wing chord is twice that of the tail chord. The structural pa-
rameters of the tail are taken from the much studied config-
uration designated as case A by Isogai.’’ The flutter boundary
of an isolated NACA 0012 and two wing—tail configurations
are investigated. For model 1, the horizontal separation S,
between the quarter-chord points of the airfoils is 3.75, the
vertical offset O, between the quarter-chord point of the air-
foils is 0, and the angle of attack of both airfoils is 0. This is
asymmetric case with no aerodynamic loads at the equilibrium
position. For model 2, §, and O, are the same as in model 1,
but the angle of attack is —2.5 deg for the wing and 0 for the
tail. Note that since the wing has a negative angle of attack,
a downward lift is produced on the wing. The mesh employed
contains 9232 triangular cells with 128 nodes on the wing
surface and 64 nodes on the tail surface. The far-field bound-
ary is 15 wing chord lengths away.

The freestream has a Mach number M., = 0.8 and an angle
of attack & = 0. With the wing held stationary, a steady-state
solution is obtained first and then the tail motion is integrated
in time with a prescribed initial disturbance of A = 0.002.
The Euler implicit method is used to integrate the flow solver,
and about 3000 time steps are taken to complete one cycle of
oscillation. Figure 1 is the result of modal identification. A
linear interpolation between the calculated dampings indi-
cates that the flutter speed for an isolated airfoil is V7§ = 5.47.
The flutter speed for model 1 is V} = 6.6, which is a 20%
increase over that of an isolated airfoil. For this symmetric
configuration, the wing acts like an obstacle in the stream
that slows down the flow approaching the tail. Consequently,
the shock on the tail is moved upstream and decreased in
strength. The flutter speed is hence increased (a favorable
effect). The flutter speed for model 2 is V7 = 4.7, which is
a 14% decrease over that of an isolated NACA 0012. For this
asymmetrical case, the negative lift on the wing produces an
upwash that increases the effective angle of attack of the tail.
This counteracts the obstacle effect of the wing, and the net
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Fig. 1 Modal damping and reduced frequency measured from the
plunging displacement curves for an isolated NACA 0012, model 1
and model 2 configuration with a stationary forewing.
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resultis a decrease in the flutter speed (an unfavorable effect).
Note that if the tail itself has a nonzero angle of attack, the
effect of the upwash generated by the wing can be either
favorable or unfavorable, depending on whether the tail ef-
fective angle of attack is increased or decreased. It is unfa-
vorable if increased, favorable otherwise. An interesting and
important problem is then, what would happen if the wing is
oscillating and an oscillating wake is generated?

Tail Flutter with an Oscillating Forewing

The symmetric model 1 is used to investigate the tail flutter
under the influence of an oscillating forewing. The wing is
forced to pitch about its quarter-chord point following « =
3° sin(2M..k,t) where the wing reduced frequency is «, =
0.2. The freestream has M., = 0.8 and zero angle of attack.
The structural parameters are the same as given by Isogai.'®
The steady-state solution with a stationary wing is obtained
first and employed as the initial condition. The wing starts to
pitch at = 0, and at the same instant the tail is released to
move according to output of the aeroelastic solver. The Euler
implicit method is used to integrate the flow solver, and about
3000 time steps are taken to complete one cycle of wing os-
cillation.

Figure 2 shows the plunging and the pitching displacement
curves and their FFT spectra for various V*. Note that the
two displacements are in phase with different amplitudes. This
is the result of the chosen structural parameters. In general,
two frequencies can be identified in the FFT spectra. One is
the prescribed frequency of the wing oscillation that repre-
sents the external forcing to the tail aeroelastic system. The
corresponding tail response to this external forcing is a forced
oscillation at the prescribed “forcing” frequency f;. The other
is the ““characteristic” frequency f, of the tail aeroelastic sys-
tem when subjected to some disturbances. The corresponding
tail motion is a transient response at the characteristic fre-
quency of the system. This transient response may eventually
die out or grow pending on the nonlinear interactions among
the aerodynamic and the structural conditions of the system.
In fact, the characteristic frequency is the flutter frequency
when the system flutters.

Figure 2a shows the computed results for V* = 3. Itis seen
that the two modes of tail motion combine to exhibit the
“beat” pattern for ¢ < 200, but eventually the transient mode
diminishes and only the forced mode persists to become a
limit cycle oscillation with finite amplitude. Figure 2b shows
the data set for V* = 4. Only one peak at the forcing fre-
quency is identified in the FFT spectra, which indicates the
condition of resonance. The tail displacements grow rapidly
with time initially and soon become an order of magnitude
greater than those for V* < 3.5. Figure 2c shows the data set
for V* = 5. The behaviors of the tail motion are basically the
same as those for V* = 3.5. But here the transient mode lasts
longer and the beat pattern is more profound. Figure 2d shows
the data set for V* = 6. The envelope of the displacement
curves is almost constant. This implies that V* = 6 is close
to the neutral stability boundary at which the transient mode
of the tail motion neither grows nor dies. The two modes of
the tail motion show equal strength in the FFT spectra. Figure
2e shows the data set for V* = 7. The envelopes of the
displacement curve grow rapidly with increasing rate, indi-
cating an unstable situation. The dominate peak in the FFT
spectra is at the characteristic frequency, indicating that it is
the transient mode that is unstable.

Judging from Fig. 2, it is seen that displacement curves
behave differently for different V* values. It shows a damped
oscillation for V* = 3.5, a monotone increase for V* = 4, a
damped oscillation again for 4.5 = V* = 5, a neutral oscil-
lation for V* = 6, and finally an excited oscillation for V* =
6.5. The data indicate that for V* = 6 with a possible exception
of V* = 4, the tail will eventually enter into a limit cycle
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Fig. 2 Tail flutter analyses with an oscillating forewing for the symmetric model 1, left column: plunging (line) and pitching (dashes) displacement
curves, right column: FFT frequency spectra of plunging displacement, f,and f., V* = a) 3, b) 4, ¢) 5, d) 6, and e) 7.

oscillation with finite amplitude at the forcing frequency. For
V* = 4, resonance occurs between the forcing frequency and
the characteristic frequency, and the amplitude of the oscil-
lation is a maximum. For V* > 6, the transient mode continues
to grow within the recorded time with increasing rate. It is
reasonable to suggest that, similar to the flutter boundary,
there is a stability boundary around V* = 6, above which the
transient mode of the tail response will be excited. Recall that
the tail flutter boundary is V* = 6.6 with a stationary fore-
wing. This is a 9% drop in flutter boundary due to the wing
oscillation.

Figure 3 shows the computed peak height of plunging dis-
placement at the end of each computation for different V*.

Note that while most of the computations terminate at ¢ =
600, some cases terminate when a stable finite amplitude os-
cillation is resulted. Within the recorded time, there is a local
maximum in the computed displacement at V* = 4. This is
the characteristics of resonance. After V* > 6, the computed
displacement increases rapidly with increasing V*. This is the
characteristics of flutter. In this study, resonance is worthy of
our attention because it occurs before the onset of flutter.
For the given flow conditions and structural parameters, Fig.
4 shows the variation of characteristic frequency with V*.
Figure 4 is the curve on which the resonance occurs. For
example, resonance condition similar to Fig. 2b is obtained
with a wing pitching at «,, = 0.369 and V* = 2.
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Fig. 3 Tail flutter analyses with an oscillating forewing for the sym-
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at the end of each computation for different V*.
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Fig. 4 Tail flutter analyses with an oscillating forewing for the sym-
metric model 1, tail characteristic frequency f, at different V*, sym-
bols: computed, dashes: curve fit of computed data f(V *)0803 = (,648.

Conclusions

An upwind Euler solver on unstructured dynamic mesh and
a two-degree-of-freedom aeroelastic solver are coupled to ex-
amine the flutter boundary of two-dimensional wing—tail con-
figurations. The effects of a stationary forewing on the tail
flutter are twofold. First, the wing acts like an obstacle in
airstream, which slows down the flow approaching the tail.
The tail flutter boundary is hence increased (a favorable ef-
fect). Second, a downwash is generated on the tail that may
be favorable if the effective angle of attack is decreased, or
unfavorable if otherwise. For the symmetric wing~-tail con-
figuration studied, when the forewing is pitching sinusoidally,
there are two unfavorable effects on the tail aeroelastic be-
haviors. The first is a possible drop in the flutter boundary
due to the wing oscillation. The second is a possible resonance
between the forcing frequency of the wing motion and the
characteristic frequency of the tail aeroelastic system. This
resonance may occur before the onset of tail flutter. Both
resonance and flutter encourage large amplitude oscillations,
hence, they are dangerous to the tail structure.
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Introduction

ANEL methods are among the most efficient methods

for solving linearized potential flow problems. Therefore,
these methods are used extensively in the design tradeoff
studies for aircraft configurations.!* The efficiency of these
methods depends, to a large extent, on the method employed
in solving the linear algebraic equations that arise in the dis-
cretized formulation. Iterative solvers are preferred over di-
rect solvers, if convergence is guaranteed to be sufficiently
fast. However, convergence may be very slow when using
standard iterative solvers. Therefore, many panel codes use
direct solvers.>* Direct solutions can become very expensive
if the number of panels is large such as when analyzing the
flow past very complex aircraft configurations, where a large
number of panels is required. Thus, there is a need to evaluate
the applicability of new algorithms based on recent devel-
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